
Introduction	to	OpenMP	

Exercise	Notes	

Getting	started	

Change directory to the /work file system, i.e.

user@archer$ cd /work/y14/y14/guestXX/

Copy the tar file containing the code to your account and unpack it with the command

cp /home/z01/shared/UKOMP.tar .
tar -xvf UKOMP.tar

OpenMP	on	ARCHER	

Compiling	using	OpenMP	
The OpenMP compilers we use are the Cray compilers for Fortran 90 and C, both of which have
OpenMP enabled by default. To compile an OpenMP code, simply:

Fortran (ftn): ftn -o program program.f90
 C (cc): cc -o program program.c

Each directory containing the exercise source code also includes a makefile, so you can build the
executable simple by typing:

make

Job	Submission	

You can compile and run OpenMP programs on the login node, but any timings will be unreliable. For
doing timing runs you need to run on the compute nodes via the batch system. To do this, you should
submit a batch job as follows, for example to run an executable called program:

You will find a generic batch script in the Mandelbrot directory called ompbatch.pbs

cp ompbatch.pbs program.pbs

Edit the export OMP_NUM_THREADS= line in program.pbs to specify the number of threads to
use.

Submit the batch job using:

qsub -q Rnnnnnnn program.pbs

where Rnnnnnnn is the name of today’s special reserved queue for the course, which the instructor
will give you.

You can monitor your jobs status with the command qstat -u $USER

When the job has finished, you will find two new files in the directory you submitted the job from,
containing the output and error massages (if any).

Exercise	1:	Area	of	the	Mandelbrot	Set	

The example code can be found in Mandelbrot/*/HelloWorld/ where the * represents the
language of your choice, i.e. C , or F .

The	Mandelbrot	Set	
The Mandelbrot Set is the set of complex numbers c for which the iteration z = z2 + c does not diverge,
from the initial condition z = c . To determine (approximately) whether a point c lies in the set, a finite
number of iterations are performed, and if the condition |z| > 2 is satisfied then the point is considered
to be outside the Set. What we are interested in is calculating the area of the Mandelbrot Set. There is
no known theoretical value for this, and estimates are based on a procedure similar to that used here.

The	Code	
The method we use generates a grid of points in a box of the complex plane containing the upper half
of the (symmetric) Mandelbrot Set. Then each point is iterated using the equation above a finite
number of times (say 2000). If within that number of iterations the threshold condition |z| > 2 is
satisfied, then that point is considered to be outside of the Mandelbrot Set. Then counting the number
of points within the Set and those outside will give an estimate of the area of the Set.

Parallelise the serial code using the OpenMP directives and library routines that you have learned so
far.

The method for doing this is as follows:

1. Start a parallel region before the main loop, nest making sure that any private, shared or
reduction variables within the region are correctly declared.

2. Distribute the outermost loop across the threads available so that each thread has an equal
number of the points. For this you will need to use some of the OpenMP library routines.

Once you have written the code try it out using 1, 2, 3 and 4 threads. Check that the results are identical
in each case, and compare the time taken for the calculations using the different number of threads.
Note: to get accurate times, submit a batch job: see the Appendix for how to do this.

Extra	Exercise	
Try different ways of mapping iterations to threads.

Exercise	2:	Mandelbrot	again	
You can start from the code you have already, or another copy of the sequential code which can be
found in OMP-exercises/*/Mandelbrot2/. This time parallelise the outer loop using a
PARALLEL DO / parallel for directive. Don’t forget to declare the shared, private and
reduction variables. Add a SCHEDULE clause and experiment with the different schedule kinds.

Extra	Exercise	
Instead of using a reduction variable, try using an atomic update, a critical section, or lock routines to
synchronise the accesses to numoutside.

Exercise	3:	Traffic	Modelling	
Try parallelising the provided serial version of a traffic model. Parallelise the code that updates the
road and the copy-back step, being careful how you classify the variables and arrays.

Leave the initialisation step as a serial routine: parallelising random number generators is quite
difficult! The advantage of this is that your code should produce exactly the same answer in serial and
parallel.

